HIGHLIGHTS
  • real estate valuation can be performed together and this process is called as mass appraisal
  • machine learning algorithms were used for mass appraisal projects.
  • random forest, Artificial Neural Network, Support Vector Regression, Multiple Regression analysis, and k- nn algorithms were used in the research and compared each other
KEYWORDS
TOPICS
ABSTRACT
In recent years, machine learning algorithms have been used in the mass appraisal of real estate. In this study, 5 machine learning algorithms are used for residential type real estate. Machine learning algorithms used for mass appraisal in this study are Artificial Neural Networks (ANN), Random Forest (RO), Multiple Regression Analysis (MRA), K-Nearest Neighborhood (k-nn), Support Vector Regression (SVR). To test the study, real estate data collected from the central districts of Ankara, were used. The main purpose of this study is to find out which machine learning algorithm gives the best results for the mass appraisal of real estates and to reveal the most important variables that affect the prices of real estate. According to the results obtained for the city of Ankara, it was observed that the best algorithm for mass appraisal is RF in residential-type real estates, followed by the ANN, k-nn, and linear regression algorithms, respectively. According to the results obtained from the residential real estate, it was concluded that heating and distances to places of importance had the greatest effect on the value.
eISSN:2300-5289
Journals System - logo
Scroll to top